United States Patent

US009471456B2

(12) (10) Patent No.: US 9,471,456 B2
Bartnikowski et al. 45) Date of Patent: Oct. 18, 2016
(54) INTERLEAVED INSTRUCTION DEBUGGER 5,757,919 A 5/1998 Herbert et al.
5,815,154 A 9/1998 Hirs_chtick et al.
(71) Applicant: NVIDIA Corporation, Santa Clara, CA 5,802,904 A 4/1999 Atkinson et al.
(US) 5,920,725 A 7/1999 Ma et al.
5,970,147 A 10/1999 Davis
(72) Inventors: Stephen Bartnikowski, San Jose, CA g:g;gf;%‘ ﬁ S;}ggg gﬁs:;:;jaet al.
(US); Arthur Danskin, Los Angeles, 6,016,474 A 1/2000 Kim et al.
CA (US); Gerald Luiz, Los Gatos, CA 6,157,618 A 12/2000 Boss et al.
(US) 6,266,416 Bl 7/2001 Sigbj.o slashed.rnsen et al.
6,282,701 B1* 8/2001 Wygodny GOGF 11/3466
H . 702/183
(73) Assignee: EIIV ID%AC(?Jl;f ORATION, Santa 6,330,008 Bl 122001 Razdow et al.
ara, 6,362,825 Bl 3/2002 Johnson
. 6,412,039 Bl 6/2002 Chang
(*) Notice: Subject to any disclaimer, the term of this 6,668,325 Bl 12/2003 Collberg et al.
patent is extended or adjusted under 35 6,684,389 Bl 1/2004 Tanaka et al.
U.S.C. 154(b) by 0 days. (Continued)
21) Appl. No.: 13/895,266
(21) Appl. No ’ OTHER PUBLICATIONS
(22) Filed: May 15, 2013 Narayanasamy, Satish, et al., “BugNet: Continuously Recording
(65) Prior Publication Data E’f(l)fr:m Execution for Deterministic Replay Debugging”, 2005, pp.
US 2014/0344556 Al Nov. 20, 2014 (Continued)
(51) Int. CL
GOGF 9/44 (2006.01) Primary Examiner — Thuy Dao
gzgi Zj ;Z 888288 Assistant Examiner — Christopher Franco
GOG6F 11/30 (2006.01)
GOG6F 11/00 (2006.01) (57) ABSTRACT
(52) US. CL o bodi fihei . i d
CPC oo GOG6F 11/34 (2013.01); GOGF 11/00 0 or fore en oo lmims. oft emtv.emloifl o life“e toa
(2013.01); GO6F 11/30 (2013.01); GO6F meho. I?Cd? 1ng mont fo;mg exccution o1 a seL O prolgrams
11/3466 (2013.01); GO6F 11/36 (2013.01); each ncluding a .set 0 1nstruct10n.s execgtmg interleave
GOGF 11/362 (2013.01) with other instructions of the set of instructions, where each
. . . of the set of instructions includes at least one operation
(58) Field of Classification Search . £ threads: L 6 £
CPC GO6F 11/34-11/3696 Qperatlgg on a set o .t eads; organizing a first set o
g lt """ ﬁlf """"""" 1 " h hist instructions corresponding to a first program of the set of
c¢ apphication e for complete search history. programs based on an execution order of the first set of
. mstructions; generating a result set representing the first set
(56) References Cited i i & ing ! p ing the fi

U.S. PATENT DOCUMENTS

5,643,086 A
5,752,062 A

7/1997 Alcorn et al.
5/1998 Gover et al.

of instructions organized based on the execution order; and
displaying the result set.

20 Claims, 9 Drawing Sheets

US 9,471,456 B2

Page 2
(56) References Cited 2009/0031290 Al* 1/2009 Fengcccoovwn. GOGF 8/456
717/126
U.S. PATENT DOCUMENTS 2009/0307660 Al* 12/2009 Srinivasan GO6F 8/314
717/114
6,732,060 Bl 5/2004 Lee 2010/0211933 Al1* 82010 Kiel ..o GOG6F 11/3636
6,901,582 Bl 5/2005 Harrison 717/125
6,943,800 B2 9/2005 Taylor et al. 2010/0242025 Al* 9/2010 Yamazaki GOGF 11/3476
6,965,994 Bl 11/2005 Brownell et al.) 717/127
7,016,972 B2 3/2006 Bertram et al. 2012/0151183 Al1* 6/2012 Guilford GO6F 9/3851
7,047,519 B2 5/2006 Bates et al. 712/22
7,095,416 Bl 8/2006 Johns et al. 2012/0185730 Al* 7/2012 Moran GO6F 11/3648
7,107,484 B2 9/2006 Yamazaki et al. 714/37
7,173,635 B2 2/2007 Amann et al. 2013/0007536 Al* 1/2013 Fengetal. ..o 714/45
7,237,151 B2 6/2007 Swoboda et al. 2013/0297978 Al* 11/2013 GOGF 11/3632
7,260,066 B2 8/2007 Wang et al. 714/49
7,277,826 B2 10/2007 Castelli et al. 2013/0332906 Al* 12/2013 Razavi ... GO6F 11/3684
7,383,205 Bl 6/2008 Peinado et al. . 717/124
7,395,426 B2 7/2008 Lee et al. 2014/0019984 Al* 12014 Li .o GOG6F 9/5027
7.401,116 Bl 7/2008 Chalfin et al.) 718/102
7,401,242 B2 7/2008 Abernathy et al. 2014/0366006 Al* 12/2014 Gottschlich GOGF 11/3664
7.420,563 B2 9/2008 Wakabayashi 717/125
7,505,953 B2 3/2009 Doshi
7,555,499 B2 6/2009 Shah et al.
7,739,667 B2* 6/2010 Callahan, I GOGF 11/3404 OTHER PUBLICATIONS
7765.500 B2 7/2010 Hakura et al. 717127 Zamfir, Cristian, et al., “Execution Synthesis: A Technique for
7,778,800 B2 8/2010 Aguaviva et al. Automated Software Debugging”, 2010, pp. 321-334.*
7,891,012 Bl 2/2011 Kiel et al. Dunlap, George W., et al., “Execution Replay for Multiprocessor
8,276,124 B2* 9/2012 Maennel GO6F 11/3604 Virtual Machines”, 2008, pp. 121-130.*
717/125 Montesinos, Pablo, et al., “DeLorean—Recording and Determinis-
8,316,355 B2* 1112012 Feng e_t Al s 717/135 tically Replaying Shared-Memory Multiprocessor Execution Effi-
8,436,864 B2 52013 Aguaviva et al. cally Repaying cmory P
8,436,870 Bl 5/2013 Aguaviva et al. ciency”, 2008, pp. 289-300. _ _ o
8,443,340 B2* 5/2013 Stairscooco..... GO6F 11/362 Nagarakatte, Santosh, et al., “Multicore Acceleration of Priority-
717/100 Based Schedulers for Concurrency Bug Detection”, 2012, pp.
8,448,002 B2 5/2013 Bulusu et al. 543-554.*
8,452,981 Bl 5/2013 Kiel et al. Ferrara, Pietro, et al., “Static analysis of the determinism of
8,607,151 B2 12/2013 Aguaviva et al. multithreaded programs”, 2008, pp. 41-50.%
8,701,091 B1* 4/2014 Wloka GOG6F 9/4443 « . .
717/125 Lee, Yann-Hang, et al., “Replay Debugging for Multi-threaded
2001/0034835 Al 10/2001 Smith Embedded Software”, 2010, pp. 15-22.*
2001/0044928 Al 11/2001 Akaike et al. Carver, Richard H., et al., “Modern Multithreading: Monitoring”,
2002/0157086 Al 10/2002 Lewis et al. 2006, pp. 177-243.*
2002/0175839 Al 11/2002 Frey Vianney, Duc, et al., “Performance Analysis and Visualization Tools
2003/0043022 A1 3/2003 Burgan et al. for Cell/B.E. Multicore Environment”, 2008, pp. 1-12.*
2003/0120935 Al 6/2003 Teal et al. Segovia, B., et al., “Non-interleaved Deferred Shading of Inter-
2003/0214660 Al 11/2003 Plass et al. T o *
2004/0085894 Al 5/2004 Wang et al. leaved Sample Patterns”, 2006, pp. 1-9. _
2004/0158824 Al 8/2004 Gennip et al. Li, Zheng, et al., “A Novel Parallel Traffic Control Mechanism for
2004/0162989 Al 8/2004 Kirovski Cloud Computing”, 2010, pp. 376-382.*
2005/0198051 Al 9/2005 Marr et al. Hawick, K.A., et al., “Parallel Algorithms for Hybrid Multi-core
2005/0222881 Al* 10/2005 Booker CPU-GPU Implementations of Component Labelling in Critical
2005/0243094 Al* 11/2005 Patelcccoeeevnie GO6T 15/005 Phase Models”, 2013, pp. 1-7.*
345/506 Rau, Martina A., et al., “Interleaved practice in multi-dimensional
2005/0273652 Al* 12/2005 Okawa GO6F 9/505 . AR . P - "
714/10 learning tasks: Which dimension should we interleave?”, 2013, pp.
2005/0278684 Al 12/2005 Hamilton et al. 98-114.%
2006/0047958 Al 3/2006 Morais Du, Peng, et al., “From CUDA to OpenCL: Towards a performance-
2006/0079333 Al 4/2006 Morrow et al. portable solution for multi-platform GPU programming”, 2011, pp.
2006/0080625 Al 4/2006 Bose et al. 391-407 *
2006/0109846 Al 5/2006 L10_y_ et al. Maheswara, Gowritharan, et al., “TIE: An Interactive Visualization
2006/0152509 Al 7/2006 Heirich S *
2006/0161761 Al 7/2006 Schwartz et al. of Thread Interleavings”, 2010, pp. 215-216.
2006/0185017 Al 8/2006 Challener et al. Wu, Ren et al., “Clustering Billions of Data Points Using GPUs”,
2006/0242627 Al* 10/2006 Wygodny GO6F 11/3636 2009, pp. 1-5.*
717/128 Maniatakos, Michail, et al., “Vulnerability-based Interleaving for
2007/0115292 Al* 5/2007 Brothers ... GO6F322_ 3/2(7)2 Multi-Bit Upset (MBU) protection in modern microprocessors”,
. 2012, pp. 1-8.*
%88;;83(7;%2;‘ ﬁ} % 1};588; Efgﬁ;;un et al. GO6T 15/00 GPU Performance Optimization with NVPerfHUD. NVPerfHUD
""""""""" 345/589 4.0. A Heads-Up Display for Performance Analysis. NVIDIA Cor-
2008/0034351 Al* 2/2008 Pughccocccooveirn.n. GO6F 11/36 poration, May 2006, Downloaded on Aug. 24, 2012 in archive.org
717/128 under the following URL associated with a capture of Jul. 20, 2006:
2008/0095090 Al 4/2008 Lee et al http:_//Weg.arc}_live.0rg/weg/20060720222056/http://developer.
2008/0098207 Al* 4/2008 Reidocoeene. GO6F 11/3636 nvidia.com/object/nvperthud__home html.
712/227 Kiel, J. [et al.]: NVIDIA Performance Tools. Slides presented during
2008/0162272 Al* 7/2008 Huang GOG6F 11/3409 the lecture given on the occasion of the Game Developers Confer-
717/127 ence in Mar. 2006, Downloaded on Aug. 28, 2012 in archive.org
2008/0320437 Al* 12/2008 Maennel ... 717/105 under the following URL associated with a capture of May 26,

US 9,471,456 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

2006: http://web.archive.org/web/20060526023 128/http://down-
load.nvidia.com/developer/presentations/2006/gdc/2006-GDC-Per-
formance-Tools.pdf.

Online-Information on NVPerfHUD 4 in archive.org dated Jul. 20,
2006, URL: http://web.archive.org/web/20060720222056/http://de-
veloper.nvidia.com/object/nvperthud__home.html, [search carried
out on Aug. 24, 2012].

Entry on Wikipedia dated Oct. 7, 2006 regarding the term “Debug-
ger”, URL:http://en.wikipedia.org/w/index.php?title=Debugger
&oldid=63069774, [search carried out on Aug. 27, 2012].
gDEBugger, graphicREMEDY, http://www.gremedy.com/, Jul. 29,
2005.

Jeffrey K. Hollingsworth and Barton P. Miller, “Dynamic Control of
Performance Monitoring on Large Scale Parallel Systems”, Jul. 23,
1993, ACM, International Conference on Supercomputing: Pro-
ceedings of the 7th International Conference on Supercomputing,
pp. 185-194.

Dror G. Feitelson and Larry Rudolph, “Toward Convergence in Job
Scheduling for Parallel Supercomputers”, Aug. 1996, Springer, Job
Scheduling Strategies for Parallel Processing: IPPS *96 Workshop
Hololulu, Hawaii, Apr. 16, 1996 Proceedings.

Josh Lessard, “Profiling Concurrent Programs Using Hardware
Counters”, May 2005, University of Waterloo, Thesis, (abridged
copy provided).

C. Cebenoyan and M. Wloka, “optimizing the graphics pipeline”,
2003, Nvidia GDC Presentation Slide.

N. Tatarchuk, “New RenderMonkey Features for DirectX and
OpenGL Shader Development”, Game Developers Conference,
Mar. 2004.

“ATI RADEON X800, 3D Architecture White Paper”, ATI, 2005,
pp. 1-13, with proof of seniority (4 pages), according to ACM
bibliograghy regarding the document: “The Direct3D 10 System”,
ACM TOG, vol. 25, Iss. 3 (Jul. 2006).

“maxVUE Grapic Editor”, Metso Automation, 2005, pp. 1-6, http://
www.metsoautomation.com/automation/indes.nsf/FR?Readform
&ATL=automation/ed_ prod_ nsf/WebWID/WTB-041110-
22256F-2445A.

A Relational Debugging Engine for the Graphics Pipeline, Duca et
al., http://citeseer.ist.psu.edu/cache/papers/ cs2/167/
http:zSZzSzwww.cs.jhu.eduzSz~cohensSzPublicationszSzgldb.
pdf/a-relational-debugging-engine.pdf International Conference on
Computer Graphics and Interactive Techniques, ACM SIGGRAPH
2005, pp. 453-463, LA, ISSN: 0730-0301.

* cited by examiner

U.S. Patent Oct. 18, 2016 Sheet 1 of 9 US 9,471,456 B2

100

£/

1680
s/
/ 1308
05 -~ GRAPHICS SYSTEM
105 o
CPU
135
110 P
MEMORY
140
B WU O DHSPLAY
MEMORY
115 P
STORAGE
148
ool ADDITIONAL
MEMORY
120
USER INPUT o a g
{OPTIONAL)
185
I I— - ADDITIONAL
GPU(s)
128
COMMUNICATION test—gs-
INTERFACE
180
DISPLAY < B
{OFTIONAL)Y
Y

FIG. 1

US 9,471,456 B2

Sheet 2 of 9

Oct. 18, 2016

U.S. Patent

0ce
nding

¢ Ol
S (\r44
S¢¢ S0BLSIU|
SIS, Buiusisi
JaBbnagsg WUSAT

Gie
BOBLISIUY
Buipodey juaal

LE WIS NS

07 sojeinung

e

00

US 9,471,456 B2

Sheet 3 of 9

Oct. 18, 2016

U.S. Patent

ANding

IBULEYT WOIITLIIET

FEMLELY £ pEeIy)

faULRYY 7 peas)

FSLLIBLT T DS]

ey disgg

BUBRYD WD

BULBRYTY 100y

US 9,471,456 B2

Sheet 4 of 9

Oct. 18, 2016

U.S. Patent

i

i

SULPUT UG

@

WL

SULBLTY BOINRISY

e

Y

3

€ peaayy

PUAUBYD Wi

IBUUBYY 100Y

US 9,471,456 B2

Sheet 5 of 9

Oct. 18, 2016

U.S. Patent

5

i

@

iz daeps 'L ol

@Qﬁmﬁu LOI0RAELY .m,m s
iz daean Lyl <
SUBUT T pRBAYL

7 duepn 1 vinl

i

it
(EEELH

Wi

ey daeas

%,

£
-

£
<
B
*

v
.
cveeaa®?
"
.N
o

diegn T vl
BYD T pESL

e e ‘T vad]
IR %ﬂ%

-
x
@
K
°

T winl
JBUURYT WD

>
-

=
“
&

%

US 9,471,456 B2

Sheet 6 of 9

Oct. 18, 2016

U.S. Patent

PEX0

0€X0

0€x0

9%0
9%0

0 0 0
27%(7Zx0 OTX0
0 0 0
8¢¥0 0¢x0 8T%0
0 0 0
0 0 0
820 02%0 8T%0
[897r001[0 1
X0 X0 €%0
240 px0 £XQ
0 0 0
[090r00l [0

F1%0

0T%0

0T%0

230
230

‘Td

d9 old

OX(X0

8%0 0

8%0 0

‘pd

V9 Old

T%0 0
T%0 0
0 0

79 SIS

eled pPoOIeYS OITIM
IPPY POARYUS SITIM
eleq PoI°YS SITIM
IPPY PSARYS SJITIM
Gd pesd

vd pesd

Zd pesyd

‘1z4]

0d ©3TIm

Td pesd

0d pesd

‘loo0s8xq0l [L%0]2 ‘0d ‘0d

SIS

SIS

SIS

SIS

SIS

SIS

SIS

dvWI +
aYWI +

aYWI +

ceN Zen " avnI

)
(o
(o
[0

M

M

auTT
suTT
suTT
suTT
suTT
suTT
suTT

ouTT

SuTT
SuTT

SuTT

suT]

US 9,471,456 B2

Sheet 7 of 9

Oct. 18, 2016

U.S. Patent

[0c000011[9

]

#

Q9 Ol

- THX0 Td 23TIM

- 0F%0 jias!

YIX0 ‘pd ‘Td

IZ¢davr +
pesd IZ¢davr +

IZeddvI

[€T ws
[€T ws

[€T ws

+L09¢ HT°
+L09¢ HT°

+L09¢ HT°

el
el

el

M

M

M

‘0
‘0

‘0

o]
o]

o]

US 9,471,456 B2

Sheet 8 of 9

Oct. 18, 2016

U.S. Patent

0
0£€08T900TX0
0

T%0
0208T9%0

(006000108821 #

X0
FOTASG00TX0
002I96%0
00TA2G00TX0
X0
002I96%0
X0
00TA=GX0

[ozzo001[89 1 #

0
0€08T900TX0
0

T%0

0208T9%0

%0
FOTASG00TX0
00239G%0
00TASG00TX0
%0
00239G%0
%0

00T9=GX%0

do old

0

0€08T900TX0

0

T%0

0208T9%0

T%0

FOTASG00TX0

00C3F=6%0

00T9=G00Tx0

T%0

00C3F=6%0

T%0

00TI=G%0

0
0£€08T900TX0
0

T%0
0208T9%0

‘9zd ‘101x0

%0
FOTASG00TX0
00239G%0
00TASG00TX0
%0
00239G%0
%0
00TASGX0

‘0€ed

e3eq TeqoTD 93TIM
IPPY TRUOTD S3TIM
979 pesy
gzd pesy
pzd pesy

+ o] q° 1S
e3eq TeqoTD 93TIM
IPPY TRUOTD S3TIM
e3eq TeqoTD 93TIM
IPPY TRAOTD S3TIM
1€d pesy
0cd pesy
62d pesy
8zd pesy

‘1974] 79 9D d" LS

IS

LS

IS

IS

IS

IS

IS

IS

LS

IS

IS

IS

LS

U.S. Patent Oct. 18, 2016 Sheet 9 of 9 US 9,471,456 B2

700 -

()

h 4
Monitor execution of a set of programs each including a set of
instructions executing interleavely with other instructions of the set
of instructions, where gach of the set of instructions includes at
least one operation operating on a set of threads
702

A\

Organize a first set of instructions corresponding to a first program
of the set of programs based on an execution order of the first set
of instructions
704

A
Generate a result set representing the first set of instructions
organized based on the execution order
706

¥

Display the result set
708

()

FIG. 7

US 9,471,456 B2

1
INTERLEAVED INSTRUCTION DEBUGGER

BACKGROUND OF THE INVENTION

A debugger or debugging tool is a computer program that
may be used to test and debug other programs. The code to
be examined might be running on an instruction set simu-
lator, a technique that may allow greater control in its ability
to halt when specific conditions are encountered, but which
will typically be somewhat slower than executing the code
directly on the appropriate or the same processor. Some
debuggers offer two modes of operation, full or partial
simulation, to limit this impact.

A program may include one or more bugs that cause the
program to execute improperly (e.g., causing the program to
behave undesirably, provide incorrect results, crash entirely,
etc.). A debugger may monitor characteristics of a program
while the program executes and provide diagnostic infor-
mation to a user in order to investigate the cause or symp-
toms of a bug in the program. For example, a debugger may
indicate the different values of a memory location as a result
of instructions and operations that may cause the value of the
memory location to change.

Conventional debuggers show data read and written, to
and from memory or registers, in order to help software
developers better understand how the computer is executing
their programs. Debuggers may generally present such data
live, or as the program executes. A developer has the option
to step through the source code, instruction by instruction,
per thread of execution. The developer sees only a snapshot
of the current state of the computer (e.g., values in memory,
location in the program, and the active thread). Aside from
the program stack trace, all context must be tracked manu-
ally by the developer.

Processors (e.g., Graphics Processing Units (GPUs), Cen-
tral Processing Units (CPUs), etc) may process many pro-
grams, instructions, threads, and so on in parallel. Many
logical contexts may be executing in parallel or otherwise
interleaved. For example, modern GPU’s execute programs
simultaneously on several independent streaming multipro-
cessors (SM). Each SM is capable of simultaneously execut-
ing multiple cooperative thread arrays (CTAs), each warp of
which may include multiple threads (e.g., 16 threads, 32
threads, 64 threads, etc). CTAs, warps, and/or threads can
have interdependence on other threads and warps on the SM,
and the order and interleaving of instruction execution from
multiple other threads can be critical in understanding
execution errors in programs running on an SM. Conven-
tional processes of executing simulations of program(s) and
debugging contexts of execution become more complicated
with the parallel context information.

For example, an SM may execute an instruction of a first
program. However, before executing a second instruction of
the first program, the SM may execute one or more instruc-
tions of one or more other programs (e.g., 100 other instruc-
tions, 1,000 other instructions, and so on). The SM may
eventually return to executing one or more instructions of
the first program. Further, the SM may execute threads,
warps, CTAs, and/or programs interleaved and/or in a multi-
threaded fashion. A debugger may have difficulty following
the execution of the first program because the debugging
data associated with one or more instructions of one or more
other programs may be interleaved with the debugging data
of the first program.

BRIEF SUMMARY OF THE INVENTION

Accordingly, one or more embodiments of the invention
are directed to a method including monitoring execution of

20

40

45

55

65

2

a set of programs each including a set of instructions
executing interleaved with other instructions of the set of
instructions, where each of the set of instructions includes at
least one operation operating on a set of threads; organizing
a first set of instructions corresponding to a first program of
the set of programs based on an execution order of the first
set of instructions; generating a result set representing the
first set of instructions organized based on the execution
order; and displaying the result set.

One or more embodiments of the invention are directed to
a system including a tracker configured to monitor execution
of a set of programs each including a set of instructions
executing interleaved with other instructions of the set of
instructions, where each of the set of instructions includes at
least one operation operating on a set of threads; and an
aggregator configured to: organize a first set of instructions
corresponding to a first program of the set of programs based
on an execution order of the first set of instructions; generate
a result set representing the first set of instructions organized
based on the execution order for display on a display.

One or more embodiments of the invention are directed to
non-transitory computer-readable storage medium including
a set of instructions configured to execute on at least one
computer processor and including functionality to: monitor
execution of a set of programs each including a set of
sub-instructions executing interleaved with other sub-in-
structions of the set of sub-instructions, where each of the set
of sub-instructions includes at least one operation operating
on a set of threads; organize a first set of sub-instructions
corresponding to a first program of the set of programs based
on an execution order of the first set of sub-instructions;
generate a result set representing the first set of sub-instruc-
tions organized based on the execution order; and display the
result set.

The following detailed description together with the
accompanying drawings will provide a better understanding
of the nature and advantages of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention are illustrated by
way of example, and not by way of limitation, in the figures
of the accompanying drawings and in which like reference
numerals refer to similar elements.

FIG. 1 is a block diagram of an example of a computer
system capable of implementing embodiments according to
the present invention.

FIG. 2 is a block diagram view of an exemplary debugger
program simulation, according to an embodiment of the
present invention.

FIG. 3 shows an exemplary monitoring channel hierarchy
of'a debugger program simulation, according to an embodi-
ment of the present invention.

FIG. 4 shows an exemplary monitoring channel hierarchy
of'a debugger program simulation, according to an embodi-
ment of the present invention.

FIG. 5 shows an exemplary CTA channel of a debugger
program simulation, according to an embodiment of the
present invention.

FIGS. 6A-6D show exemplary output of a debugger
program simulation, according to an embodiment of the
present invention.

FIG. 7 depicts a flowchart of an exemplary computer-
implemented process of organizing and displaying execu-
tion debugging data, according to an embodiment of the
present invention.

US 9,471,456 B2

3

DETAILED DESCRIPTION OF THE
INVENTION

Reference will now be made in detail to the various
embodiments of the present disclosure, examples of which
are illustrated in the accompanying drawings. While
described in conjunction with these embodiments, it will be
understood that they are not intended to limit the disclosure
to these embodiments. On the contrary, the disclosure is
intended to cover alternatives, modifications and equiva-
lents, which may be included within the spirit and scope of
the disclosure as defined by the appended claims. Further-
more, in the following detailed description of the present
disclosure, numerous specific details are set forth in order to
provide a thorough understanding of the present disclosure.
However, it will be understood that the present disclosure
may be practiced without these specific details. In other
instances, well-known methods, procedures, components,
and circuits have not been described in detail so as not to
unnecessarily obscure aspects of the present disclosure.

Some portions of the detailed descriptions that follow are
presented in terms of procedures, logic blocks, processing,
and other symbolic representations of operations on data bits
within a computer memory. These descriptions and repre-
sentations are the means used by those skilled in the data
processing arts to most effectively convey the substance of
their work to others skilled in the art. In the present
application, a procedure, logic block, process, or the like, is
conceived to be a self-consistent sequence of steps or
instructions leading to a desired result. The steps are those
utilizing physical manipulations of physical quantities. Usu-
ally, although not necessarily, these quantities take the form
of electrical or magnetic signals capable of being stored,
transferred, combined, compared, and otherwise manipu-
lated in a computer system. It has proven convenient at
times, principally for reasons of common usage, to refer to
these signals as transactions, bits, values, elements, symbols,
characters, samples, pixels, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussions, it is appreciated
that throughout the present disclosure, discussions utilizing
terms such as “receiving,” “generating,” “sending,” “decod-
ing,” “encoding,” “accessing,” “streaming,” or the like, refer
to actions and processes (e.g., flowchart 700 of FIG. 7) of a
computer system or similar electronic computing device or
processor (e.g., system 100 of FIG. 1). The computer system
or similar electronic computing device manipulates and
transforms data represented as physical (electronic) quanti-
ties within the computer system memories, registers or other
such information storage, transmission or display devices.

Embodiments described herein may be discussed in the
general context of computer-executable instructions residing
on some form of computer-readable storage medium, such
as program modules, executed by one or more computers or
other devices. By way of example, and not limitation,
computer-readable storage media may comprise non-transi-
tory computer-readable storage media and communication
media; non-transitory computer-readable media include all
computer-readable media except for a transitory, propagat-
ing signal. Generally, program modules include routines,
programs, objects, components, data structures, etc., that
perform particular tasks or implement particular abstract
data types. The functionality of the program modules may be
combined or distributed as desired in various embodiments.

29 <

10

15

20

25

30

35

40

45

50

55

60

65

4

Computer storage media includes volatile and nonvola-
tile, removable and non-removable media implemented in
any method or technology for storage of information such as
computer-readable instructions, data structures, program
modules or other data. Computer storage media includes, but
is not limited to, random access memory (RAM), read only
memory (ROM), electrically erasable programmable ROM
(EEPROM), flash memory or other memory technology,
compact disk ROM (CD-ROM), digital versatile disks
(DVDs) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices, or any other medium that can be used to store the
desired information and that can accessed to retrieve that
information.

Communication media can embody computer-executable
instructions, data structures, and program modules, and
includes any information delivery media. By way of
example, and not limitation, communication media includes
wired media such as a wired network or direct-wired con-
nection, and wireless media such as acoustic, radio fre-
quency (RF), infrared, and other wireless media. Combina-
tions of any of the above can also be included within the
scope of computer-readable media.

FIG. 1 is a block diagram of an example of a computer
system 100 capable of implementing embodiments accord-
ing to the present invention. In the example of FIG. 1, the
computer system 100 includes a central processing unit
(CPU) 105 for running software applications and optionally
an operating system. Memory 110 stores applications and
data for use by the CPU 105. Storage 115 provides non-
volatile storage for applications and data and may include
fixed disk drives, removable disk drives, flash memory
devices, and CD-ROM, DVD-ROM or other optical storage
devices. The optional user input 120 includes devices that
communicate user inputs from one or more users to the
computer system 100 and may include keyboards, mice,
joysticks, touch screens, and/or microphones.

The communication or network interface 125 allows the
computer system 100 to communicate with other computer
systems via an electronic communications network, includ-
ing wired and/or wireless communication and including the
Internet. The optional display device 150 may be any device
capable of displaying visual information in response to a
signal from the computer system 100. The components of
the computer system 100, including the CPU 105, memory
110, data storage 115, user input devices 120, communica-
tion interface 125, and the display device 150, may be
coupled via one or more data buses 160.

In the embodiment of FIG. 1, a graphics system 130 may
be coupled with the data bus 160 and the components of the
computer system 100. The graphics system 130 may include
a physical graphics processing unit (GPU) 135 and graphics
memory. The GPU 135 generates pixel data for output
images from rendering commands. The physical GPU 135
can be configured as multiple virtual GPUs that may be used
in parallel (concurrently) by a number of applications
executing in parallel.

Graphics memory may include a display memory 140
(e.g., a framebuffer) used for storing pixel data for each pixel
of an output image. In another embodiment, the display
memory 140 and/or additional memory 145 may be part of
the memory 110 and may be shared with the CPU 105.
Alternatively, the display memory 140 and/or additional
memory 145 can be one or more separate memories pro-
vided for the exclusive use of the graphics system 130.

In another embodiment, graphics processing system 130
includes one or more additional physical GPUs 155, similar

US 9,471,456 B2

5

to the GPU 135. Each additional GPU 155 may be adapted
to operate in parallel with the GPU 135. Each additional
GPU 155 generates pixel data for output images from
rendering commands. Each additional physical GPU 155
can be configured as multiple virtual GPUs that may be used
in parallel (concurrently) by a number of applications
executing in parallel. Each additional GPU 155 can operate
in conjunction with the GPU 135 to simultaneously generate
pixel data for different portions of an output image, or to
simultaneously generate pixel data for different output
images.

Each additional GPU 155 can be located on the same
circuit board as the GPU 135, sharing a connection with the
GPU 135 to the data bus 160, or each additional GPU 155
can be located on another circuit board separately coupled
with the data bus 160. Each additional GPU 155 can also be
integrated into the same module or chip package as the GPU
135. Each additional GPU 155 can have additional memory,
similar to the display memory 140 and additional memory
145, or can share the memories 140 and 145 with the GPU
135.

For example, a computer program for organizing and
displaying execution debugging data may be stored on the
computer-readable medium and then stored in system
memory 110 and/or various portions of storage device 115.
When executed by the processor 105, the computer program
may cause the processor 105 to perform and/or be a means
for performing the functions required for carrying out the
organizing and displaying execution debugging data pro-
cesses discussed above.

In order to organize the complex interaction from one or
more programs, one or more simulations of programs, or
execution of one or more programs on a processor, in one or
more embodiments of the invention, a debugger program
monitors register and memory operations (e.g., reads and
writes), and tracks which warps, instructions, CTAs, and/or
programs threads belong. The debugger program may be an
offline debugger. An offline debugger does not perturb actual
execution of one or more programs. As the debugger pro-
gram accumulates execution data associated with a simula-
tion or execution of the program, it may organize the
execution data by execution order, and aggregates all warp
data together for each instruction. The debugger program
may then store the organized execution data (e.g., write the
execution to a storage drive in the form of a flat text file).

Embodiments of the present invention allow for present-
ing execution data in an organized and simplified fashion,
for example for each instruction, all data read and written to
registers or memory. In addition, embodiments of the pres-
ent invention allow for displaying parallel single instruction
multiple threads (SIMT) and/or single instruction multiple
data (SIMD) threads adjacently (e.g. horizontally side by
side) for visualization of simultaneous instruction execution.
Further, embodiments of the present invention allow dis-
playing the order in which instructions are executed between
warps and CTAs. Moreover, embodiments of the present
invention allow for easier identification of concurrency bugs
in programs (e.g., GPU assembly programs) by software
developers.

FIG. 2 is a block diagram view of an exemplary debugger
program simulation 200, according to an embodiment of the
present invention. A simulator 205 includes one or more SM
simulators 210. The simulator 205 and/or SM simulator(s)
210 may be configured to simulate execution, by of one or
more multi-threaded multi-core processors or processor
cores, of programs or grids of CTAs. The SM simulator(s)
210 may include an event reporting interface 215. The event

10

15

20

25

30

35

40

45

50

55

60

65

6

reporting interface 215 may be configured to provide data
associated with the simulation executed by the SM simulator
210 (e.g., to an event listening interface 220).

In one or more embodiments of the invention, a tracker is
configured to monitor execution of a set of programs each
including a set of instructions executing interleaved with
other instructions of the set of instructions. For example, in
FIG. 2, the event listening interface 220 may operate as a
tracker configured to monitor execution of a set of programs
executed by the SM simulator 210. Each program can
include a set of instructions executing interleaved with other
instructions of the set of instructions. For example, the SM
simulator 210 may execute a first instruction of a first
program, then an instruction of a second program, then a
second and third instruction of the first program, then an
instruction of a third program, then a second instruction of
the second program, then a fourth instruction of the first
program, and so on.

In one or more embodiments of the invention, each of the
set of instructions includes at least one operation operating
on a set of threads. For example, referring to FIG. 6A, an
“IMAD.U32.U32” instruction includes a “Read R0 opera-
tion, a “Read R1” operation, and a “Write R0” operation. In
one or more embodiments of the invention, the at least one
operation includes at least two threads. For example, each
operation operates on 7 threads. In one or more embodi-
ments, the threads of a warp are operated on in parallel.

In one or more embodiments of the invention, an aggre-
gator is configured to organize a first set of instructions
corresponding to a first program of the set of programs based
on an execution order of the first set of instructions. For
example, in FIG. 2, a debugger simlet 225 may operate as an
aggregator configured to organize a first set of instructions
corresponding to a first program of the set of programs. The
debugger simlet 225 may organize the first set of instructions
based on the execution order of the first set of instructions.
In one or more embodiments of the invention, the aggregator
is further configured to filter out instructions other than
instructions in the first set of instructions. In one or more
embodiments of the invention, the aggregator is further
configured to gather operations only within the first set of
instructions.

For example, returning to the example where the SM
simulator 210 executes a first instruction of a first program,
then an instruction of a second program, then a second and
third instruction of the first program, then an instruction of
a third program, then a second instruction of the second
program, then a fourth instruction of the first program, and
so on. The debugger simlet 225 may organize the first,
second, third, and fourth instructions of the first program so
that they are in the order of first, second, third, and fourth
instruction.

Further, the debugger simlet 225 may organize the
instructions without the instructions of other programs (e.g.,
the second and third programs) in between by filtering out
instructions other than instructions in the first set of instruc-
tions and/or gathering operations only within the first set of
instructions. The debugger simlet 225 may organize the
instructions of the second program so that they are in the
order of execution without the instructions of other pro-
grams (e.g., the first and third programs) in between. The
debugger simlet 225 may similarly organize the instructions
of all other programs.

In one or more embodiments of the invention, the at least
one operation of the set of instructions executes interleaved
with other operations of the set of instructions. In an
example, a first operation of a first instruction may execute,

US 9,471,456 B2

7

then an operation of a second instruction may execute, then
a second operation of the first instruction may execute.
Referring to FIG. 6A, the “Read R0” operation of the
“IMAD.U32.U32” instruction may execute, followed by the
execution of at least one operation associated with a different
instruction, then followed by the execution of the “Read R1”
operation of the “IMAD.U32.U32” instruction.

In one or more embodiments of the invention, the aggre-
gator is further configured to organize the first set of
instructions based on an execution order of the operations.
Continuing the example, the debugger simlet 225 may
organize the first and second operations of the first instruc-
tion so that they are in the order of the first operation, second
operation, and so on without the operations of other instruc-
tions (e.g., the second instruction) in between. The debugger
simlet 225 may similarly organize the operations of all other
instructions.

In one or more embodiments of the invention, the set of
threads execute interleaved with other threads of the set of
threads. In an example, a first thread of a first operation may
execute, then a second thread of the first operation or a
second operation may execute, then a second thread of the
first operation may execute. Referring to FIG. 6A, the thread
0 of the “Read R0” operation may execute, followed by the
execution of at least one thread of the “Read R0 operation
or another operation, then followed by the execution of
thread 1 of the “Read R0 operation.

In one or more embodiments of the invention, the aggre-
gator is further configured to organize the first set of
instructions based on an execution order of the set of
threads. Continuing the example, the debugger simlet 225
may organize the first and second threads of the first
operation so that they are in the order of the first thread,
second thread, and so on without the threads of the first
operation or a second operation in between. The debugger
simlet 225 may similarly organize the threads of all other
operations.

In one or more embodiments of the invention, an aggre-
gator is configured to generate a result set representing the
first set of instructions organized based on the execution
order. For example, the debugger simlet 225 may be con-
figured to generate output 230 that represents the first set of
instructions organized based on the execution order. The
output 230 may be in the form of a text file, a binary-
encoded file, or any other format operable to store the result
set.

In one or more embodiments of the invention, the aggre-
gator is further configured to identify the set of threads
corresponding to each at least one operation. For example,
the aggregator is configured to monitor register and memory
operations (e.g., reads and writes) to identify which thread
and instruction each operation corresponds to.

In one or more embodiments of the invention, the aggre-
gator is further configured to include in the result set, data
associated with each of the set of threads, and associate the
data with a corresponding operation in the result set. For
example, referring to FIG. 6A, the aggregator may include
in the result set data such as register values read or written,
for each of the 7 threads. Further, the aggregator may
associate such data with a corresponding operation by
indicating which data for each thread is associated with
which operation (e.g., that a value of “Ox1” is associated
with thread 1 of the “Read R1” operation of the
“IMAD.U32.U32” instruction).

In one or more embodiments of the invention, a display is
configured to display the result set. In one or more embodi-
ments of the invention, the display is further configured to

20

40

45

50

8

display data associated with the at least two threads adjacent
to a representation of the at least one operation. For example,
referring to FIG. 6A, the display may display the data
corresponding to the 7 threads of the “Read R0” operation
side by side. In the case of the “Read R0 operation, the data
for threads 0-6 are all “0.” The display may display the data
corresponding to the 7 threads of the “Read R1” operation
side by side. In the case of the “Read R1” operation, the data
for threads 0-6 is “0,” “0x1,” “0x2,” “0x3,” “0x4,” “0x5,”
“0x6,” respectively.

As a result, a viewer of the display may easily understand
the execution of a specific program and/or instruction for
debugging purposes because instructions of a program may
be organized next to each other (without intervening instruc-
tions of other programs), operations of the instructions may
be organized next to each other (without intervening opera-
tions of other instructions), and threads of operations may be
organized next to each other (without intervening threads of
other operations). For example, FIG. 6D shows execution
data organized so that intervening execution of instructions
for other CTAs is removed or filtered out and only execution
data for two instructions (e.g., ST.E.CG.64 and ST.E) for
CTA 0 are shown.

In one or more embodiments of the invention, the aggre-
gator and tracker may be the same and/or part of the same
component. For example, the event reporting interface 215
and the event listening interface 220 are the same compo-
nent. In one or more embodiments of the invention, the
aggregator and tracker may not be the same and/or not part
of the same component.

FIG. 3 shows an exemplary monitoring channel hierarchy
of'a debugger program simulation, according to an embodi-
ment of the present invention. In one or more embodiments
of the invention, a multi-core processor may include mul-
tiple processing cores. Each processing core, or SM, may
include one or more SMs, where each SM may execute one
or more grids of CTAs or programs that may include CTAs.
Each CTA may include one or more warps, where each warp
includes one or more threads.

The monitoring channel may be run in the simulator 205
and/or SM simulator 210. The monitoring channel may run
an execution of and/or monitor an execution of one or more
CTAs. Because each CTA may include one or more warps,
a CTA channel may include one or more warp channels
corresponding to each warp in the CTA. Each warp channel
may include a warp ID and one or more thread channels.
Each of the thread channels may be associated with one or
more instruction channels. For example, thread channels 1-3
each include multiple instruction channels representing
instructions that correspond to the corresponding thread.
Each instruction may include a corresponding instruction
channel that includes operations of the instruction for the
corresponding thread.

The event reporting interface 215 may monitor the
instruction channels and send corresponding execution data
as output to the event listening interface 220, which in turn
sends the execution data to the debugger simlet 225. Alter-
natively, the event listening interface 220 may monitor the
instruction channels and send corresponding execution data
as output to the debugger simlet 225.

FIG. 4 shows an exemplary monitoring channel hierarchy
of'a debugger program simulation, according to an embodi-
ment of the present invention. FI1G. 4 is similar to FIG. 3, but
also shows more than one instruction channel corresponding
to more than one instruction in the thread 2 channel. Each
instruction channel provides output that may be received by

US 9,471,456 B2

9

the aggregator, event reporting interface 215, event listening
interface 220, and/or debugger simlet 225.

FIG. 5 shows an exemplary CTA channel of a debugger
program simulation, according to an embodiment of the
present invention. The CTA channel may correspond to a
CTA channel of FIGS. 3 and 4. The CTA channel may
include a CTA ID and one or more warps. For example, the
CTA channel includes warp ID 1 and warp ID 2. Each warp
may include a corresponding warp channel that includes a
warp 1D and one or more threads. Each of the threads may
include a corresponding thread channel that is associated
with one or more instructions. For example, a thread channel
1 corresponding to CTA 1 and warp 1, and a thread channel
1 corresponding to CTA 1 and warp 2. Each instruction may
include a corresponding instruction channel that includes
operations of the instruction for the corresponding thread.
Each instruction channel provides output that may be
received by the aggregator, event reporting interface 215,
event listening interface 220, and/or debugger simlet 225.

FIG. 6A shows exemplary output of a debugger program
simulation, according to an embodiment of the present
invention. As shown on the first line, an “IMAD.U32.U32”
instruction included operations for a register transaction
(e.g., read from registers RO and R1 and write to register
RO). The program counter is 00d060. The second and third
lines show what values were read from registers R0 and R1,
respectively, from all threads. The fourth line shows what
was written to register R0 by all threads. In the example,
these values are demonstrated in hexadecimal form. All lines
of output may be prefixed with a CTA ID (e.g., an incre-
mental counter) and a Warp ID.

It should be appreciated that any number of threads may
be included for each operation and displayed. For example,
while 7 threads are shown in the present example, 16, 32, or
64 threads could be shown.

FIG. 6B shows exemplary output of a debugger program
simulation, according to an embodiment of the present
invention. The example output shows the instruction, pro-
gram location, and register and memory transactions for
each thread in a warp. All lines feature the instruction
context on the far left. In this case [c 4: w 0] represents CTA
4 and warp ID 0. The instruction start with a first line
showing the instruction details from a program assembler.
After the first line, the register reads and writes are dis-
played. For example, the second line shows that data is read
from the R2 register (e.g., “Read R2”). From left to right, the
first column of numeric data corresponds to thread 0 which
read the value 0, the second column corresponds to thread 1
which read the value 0x8, the third column corresponds to
thread 3 which read the value 0x10, the fourth column
corresponds to thread 4 which read the value 0x18, and so
on.

FIG. 6B also shows memory transactions in the last four
lines (e.g., lines 5-8). The details of a memory transaction
may be more complex to illustrate to a user than a register
transaction. The address can be different for each thread
when memory transactions are involved. Processor memory
regions can be global, shared, or local. The transaction
involves an address and the data currently residing at that
address. The size of the transaction vary (e.g., from 1 byte
to 16).

In FIG. 6B, each memory transaction may be shown as a
pair of lines. The first line in the pair may show the address
operated on by each thread. The second line in the pair may
show the data at that address for each thread after the
instruction is executed. If the transaction is greater than a
predefined number of bits, then the display may show the

10

15

20

25

30

35

40

45

50

55

60

65

10

output in a form similar to the output of multiple transac-
tions. For example, the first line in the pair may show the
address operated on by each thread. The second line in the
pair may show the data at that address for each thread after
the instruction is executed.

In this example, a 64-bit STS instruction is performed and
the program counter is 00df68. Thread 0 writes to address
0x0 with an 64-bit value. The first four bytes of the write
show in address 0x0 on the lines 5 and 6, and the last four
bytes of the write show in address Ox4 on lines 7 and 8. It
should be appreciated that vector stores and loads may be
performed, allowing 32-, 64-, and 128-bit memory reads and
writes.

FIG. 6C shows exemplary output of a debugger program
simulation, according to an embodiment of the present
invention. The far left context indicator includes a CTA 1D,
warp 1D, a SM 1D, and a clock value. The clock value is a
clock value corresponding to an instruction issue time.

FIG. 6D shows exemplary output of a debugger program
simulation, according to an embodiment of the present
invention. Each instruction block is shown in its entirety
before the next instruction is shown. In this example, an
ST.CG.64 instruction in CTA 0, warp 0 is executed, followed
by an ST.E instruction in the same CTA, but warp ID 1. If
an instruction in another CTA were shown next, for example
CTA 1 with warp ID 2, then the output would show [c 1: w
2].

Accordingly, execution data for each thread, warp, opera-
tion, instruction, CTA, program, and/or SM may be orga-
nized and displayed adjacent to other execution data for the
same or other threads, warps, operations, instructions,
CTAs, programs, and/or SMs. For example, execution data
for all threads, warps, operations, and/or instructions of a
particular CTA may be organized and displayed in their
execution order without the inclusion of execution data for
other threads, warps, operations, and/or instructions of other
CTAs that may have executed interleaved with the threads,
warps, operations, and/or instructions of the particular CTA.

FIG. 7 shows a flowchart 700 of an exemplary process of
organizing and displaying execution debugging data. While
the various steps in this flowchart are presented and
described sequentially, one of ordinary skill will appreciate
that some or all of the steps can be executed in different
orders and some or all of the steps can be executed in
parallel. Further, in one or more embodiments of the inven-
tion, one or more of the steps described below can be
omitted, repeated, and/or performed in a different order.
Accordingly, the specific arrangement of steps shown in
FIG. 7 should not be construed as limiting the scope of the
invention. Rather, it will be apparent to persons skilled in the
relevant art(s) from the teachings provided herein that other
functional flows are within the scope and spirit of the present
invention. Flowchart 700 may be described with continued
reference to exemplary embodiments described above,
though the method is not limited to those embodiments

In a block 702, execution of a set of programs each
including a set of instructions executing interleaved with
other instructions of the set of instructions is monitored,
where each of the set of instructions includes at least one
operation operating on a set of threads. For example, the
simulator 205 and/or SM simulator 210 may execute a set of
programs that include a set of instructions, where the
instructions of the programs are executed interleaved with
other instructions. The event reporting interface 215 and/or
event listening interface 220 may monitor the execution.

In a block 704, a first set of instructions corresponding to
a first program of the set of programs is organized based on

US 9,471,456 B2

11

an execution order of the first set of instructions. For
example, the debugger simlet 225 may organize debugging
execution data. The debugger simlet 225 may organize the
execution data based on the execution order of the instruc-
tions, operations, and/or threads. For example, the debugger
simlet 225 may maintain the execution order of the instruc-
tions, operations, and/or threads and filter out other instruc-
tions, operations, and/or threads.

In a block 706, a result set representing the first set of
instructions organized based on the execution order is gen-
erated. For example, the debugger simlet 225 may generate
a result set to be provided as output 230. In a block 708, the
result set is displayed. For example, the result set may be
sent to a display and/or a display may receive the result set
for display.

While the foregoing disclosure sets forth various embodi-
ments using specific block diagrams, flowcharts, and
examples, each block diagram component, flowchart step,
operation, and/or component described and/or illustrated
herein may be implemented, individually and/or collec-
tively, using a wide range of hardware, software, or firmware
(or any combination thereof) configurations. In addition, any
disclosure of components contained within other compo-
nents should be considered as examples because many other
architectures can be implemented to achieve the same func-
tionality.

The process parameters and sequence of steps described
and/or illustrated herein are given by way of example only.
For example, while the steps illustrated and/or described
herein may be shown or discussed in a particular order, these
steps do not necessarily need to be performed in the order
illustrated or discussed. The various example methods
described and/or illustrated herein may also omit one or
more of the steps described or illustrated herein or include
additional steps in addition to those disclosed.

While various embodiments have been described and/or
illustrated herein in the context of fully functional comput-
ing systems, one or more of these example embodiments
may be distributed as a program product in a variety of
forms, regardless of the particular type of computer-readable
media used to actually carry out the distribution. The
embodiments disclosed herein may also be implemented
using software modules that perform certain tasks. These
software modules may include script, batch, or other execut-
able files that may be stored on a computer-readable storage
medium or in a computing system. These software modules
may configure a computing system to perform one or more
of the example embodiments disclosed herein. One or more
of the software modules disclosed herein may be imple-
mented in a cloud computing environment. Cloud comput-
ing environments may provide various services and appli-
cations via the Internet. These cloud-based services (e.g.,
software as a service, platform as a service, infrastructure as
a service, etc.) may be accessible through a Web browser or
other remote interface. Various functions described herein
may be provided through a remote desktop environment or
any other cloud-based computing environment.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments.
However, the illustrative discussions above are not intended
to be exhaustive or to limit the invention to the precise forms
disclosed. Many modifications and variations are possible in
view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the
invention and its practical applications, to thereby enable
others skilled in the art to best utilize the invention and

10

15

20

25

30

35

40

45

50

55

60

65

12

various embodiments with various modifications as may be
suited to the particular use contemplated.

Embodiments according to the invention are thus
described. While the present disclosure has been described
in particular embodiments, it should be appreciated that the
invention should not be construed as limited by such
embodiments, but rather construed according to the below
claims.

What is claimed is:

1. A method comprising:

monitoring concurrent execution of a plurality of pro-
grams each comprising a corresponding plurality of
instructions executing interleaved with other instruc-
tions of said corresponding plurality of instructions and
other instructions of said plurality of programs,
wherein each of said plurality of instructions comprises
at least one operation operating on a plurality of
threads;

from a superset of instructions comprising instructions
from said plurality of programs executing concurrently,
organizing a first plurality of instructions correspond-
ing to a first program of said plurality of programs
based on a first execution order of said first plurality of
instructions, and based on a second execution order of
operations of a corresponding instruction in said first
plurality of instructions, and based on a third execution
order of threads of a corresponding operation in said
corresponding instruction, wherein an instruction of
said first program comprises one or more operations
such that each operation is executed on two or more
threads;

generating a result set representing said first plurality of
instructions organized based on said first, second, and
third execution orders, wherein said result set com-
prises data resulting from execution of said first plu-
rality of instructions such that first data is associated
with a corresponding operation of a corresponding
instruction in said result set; and

displaying said result set.

2. The method of claim 1, wherein:

said at least one operation of said plurality of instructions
executes interleaved with other operations of said plu-
rality of instructions; and

said organizing further comprises organizing said first
plurality of instructions based on an execution order of
said operations.

3. The method of claim 1, wherein:

said plurality of threads execute interleaved with other
threads of said plurality of threads; and

said organizing further comprises organizing said first
plurality of instructions based on an execution order of
said plurality of threads.

4. The method of claim 1:

further comprising identifying said plurality of threads
corresponding to each at least one operation; and

wherein said generating further comprises, including in
said result set, data associated with each of said plu-
rality of threads, and associating said data with a
corresponding operation in said result set.

5. The method of claim 1, wherein:

said displaying said result set comprises displaying data
associated with said at least two threads adjacent to a
representation of said at least one operation.

6. The method of claim 1, wherein said organizing further

comprises filtering out instructions other than instructions in
said first plurality of instructions.

US 9,471,456 B2

13

7. The method of claim 1, wherein said organizing further
comprises gathering operations only within said first plural-
ity of instructions.
8. A system comprising:
a processor;
a tracker configured to monitor concurrent execution of a
plurality of programs each comprising a corresponding
plurality of instructions executing interleaved with
other instructions of said corresponding plurality of
instructions and other instructions of said plurality of
programs, wherein each of said plurality of instructions
comprises at least one operation operating on a plural-
ity of threads; and
an aggregator configured to:
from a superset of instructions comprising instructions
from said plurality of programs executing concur-
rently, organize a first plurality of instructions cor-
responding to a first program of said plurality of
programs based on a first execution order of said first
plurality of instructions, and based on a second
execution order of operations of a corresponding
instruction in said plurality of instructions, and based
on a third execution order of threads of a correspond-
ing operation in said corresponding instruction,
wherein an instruction of said first program com-
prises one or more operations such that each opera-
tion is executed on two or more threads; and

generate a result set representing said first plurality of
instructions organized based on said first, second,
and third execution orders for display on a display,
wherein said result set comprises data resulting from
execution of said first plurality of instructions such
that first data is associated with a corresponding
operation of a corresponding instruction in said
result set.

9. The system of claim 8, wherein:

said at least one operation of said plurality of instructions
executes interleaved with other operations of said plu-
rality of instructions; and

said aggregator is further configured to organize said first
plurality of instructions based on an execution order of
said operations.

10. The system of claim 8, wherein:

said plurality of threads execute interleaved with other
threads of said plurality of threads; and

said aggregator is further configured to organize said first
plurality of instructions based on an execution order of
said plurality of threads.

11. The system of claim 8, wherein said aggregator is

further configured to:

identify said plurality of threads corresponding to each at
least one operation; and

include in said result set, data associated with each of said
plurality of threads, and associate said data with a
corresponding operation in said result set.

12. The system of claim 8, wherein:

said display is further configured to display data associ-
ated with said at least two threads adjacent to a repre-
sentation of said at least one operation.

13. The system of claim 8, wherein said aggregator is
further configured to filter out instructions other than
instructions in said first plurality of instructions.

14. The system of claim 8, wherein said aggregator is
further configured to gather operations only within said first
plurality of instructions.

5

15

20

25

40

45

50

55

60

65

14

15. A non-transitory computer-readable storage medium
comprising a plurality of instructions configured to execute
on at least one computer processor and comprising func-
tionality to:

monitor concurrent execution of a plurality of programs

each comprising a corresponding plurality of sub-
instructions executing interleaved with other sub-in-
structions of said corresponding plurality of sub-in-
structions and other sub-instructions of said plurality of
programs, wherein each of said plurality of sub-instruc-
tions comprises at least one operation operating on a
plurality of threads;

from a superset of instructions comprising instructions

from said plurality of programs executing concurrently,
organize a first plurality of sub-instructions corre-
sponding to a first program of said plurality of pro-
grams based on a first execution order of said first
plurality of sub-instructions, and based on a second
execution order of operations of a corresponding
instruction in said first plurality of sub-instructions, and
based on a third execution order of threads of a corre-
sponding operation in said corresponding instruction,
wherein an instruction of said first program comprises
one or more operations such that each operation is
executed on two or more threads;

generate a result set representing said first plurality of

sub-instructions organized based on said first, second,
and third execution orders, wherein said result set
comprises data resulting from execution of said first
plurality of sub-instructions such that first data is
associated with a corresponding operation of a corre-
sponding sub-instruction in said result set; and
display said result set.

16. The non-transitory
medium of claim 15, wherein:

said at least one operation of said plurality of sub-

instructions executes interleaved with other operations
of said plurality of sub-instructions; and

the plurality of instructions further comprise functionality

to organize said first plurality of sub-instructions based
on an execution order of said operations.

17. The non-transitory computer-readable
medium of claim 15, wherein:

said plurality of threads execute interleaved with other

threads of said plurality of threads; and

the plurality of instructions further comprise functionality

to organize said first plurality of sub-instructions based
on an execution order of said plurality of threads.

18. The non-transitory computer-readable storage
medium of claim 15, wherein said plurality of instructions
further comprise functionality to:

identify said plurality of threads corresponding to each at

least one operation; and

include in said result set, data associated with each of said

plurality of threads, and associate said data with a
corresponding operation in said result set.

19. The non-transitory computer-readable
medium of claim 15, wherein:

said plurality of instructions further comprise functional-

ity to display data associated with said at least two
threads adjacent to a representation of said at least one
operation.

20. The non-transitory computer-readable storage
medium of claim 15, wherein said plurality of instructions

computer-readable storage

storage

storage

US 9,471,456 B2
15

further comprise functionality to ignore instructions other
than instructions in said first plurality of instructions.

#* #* #* #* #*

16

